FORM 4

CHAPTER 3 QUADRATIC FUNCTION

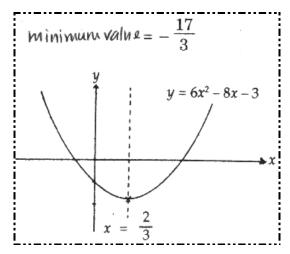
1995

- 1. (a) Given 3x+2y-1=0, find the range of values of x if y < 5.
 - (b) Find the range of values of *n* if $2n^2 + n \ge 1$. (a) $x \ge -3$ (b) $n \le -1$ $n \ge \frac{1}{2}$

a) $x > -3$ (b) $n \le -1, n \ge \frac{1}{2}$.,		(0)	n	_	-1,	п		2
---	----	--	-----	---	---	-----	---	--	---

Without using the differentiation method, or drawing a graph, find the maximum or minimum value of the function
 2(2n-1)(n+1) - 12n - 1 Hence sketch

y = 2(3x-1)(x+1) - 12x - 1. Hence, sketch the graph of the function *y*.



- 3. (a) Find the range of the values of k so that the equation $x^2 + kx + 2k 3 = 0$ does not have a root.
 - (b) Prove that the roots of the equation $(1-p)x^2 + x + p = 0$ are real and negative if 0 .

(a)
$$2 < k < 6$$

1996

4. f(x) = 0 is a quadratic equation which has two different roots -3 and p.
(a) Write f(x) in the form of

 $ax^2 + bx + c = 0.$

- (b) The curve y = kf(x) cuts the y-axis at
 - (0, 60). Given p = 5, calculate
 - (i) value of k,
 - (ii) the coordinate of the maximum point of the curve without using the differentiation method or drawing a graph.

(a)
$$f(x) = x^2 + (3 + p)x - 3p$$

(b) (i) $k = -4$
(ii) Maximum point = (1, 64)

5. Find the range of the values of x if (a) x(x+1) < 2

(b)
$$\frac{-3}{1-2x} \ge x$$

(a) $-2 < x < 1$
(b) $x \le -1$ or $\frac{1}{2} \le x \le \frac{3}{2}$

1997

- 6. A quadratic function $f(x) = 2[(x-m)^2 + n]$, where *m* and *n* are constants has a minimum point $P(6t,3t^2)$.
 - (a) Express *m* and *n* in terms of *t*.
 - (b) If t = 1, find the range of the values of *h* so that the equation f(x) = k has real roots.

(a)
$$f(x) = 2[(x - m)^{2} + n]$$
$$= 2(x - m)^{2} + 2n$$
The minimum value of $f(x)$
is $2n$ when x = m.
That is minimum point is $(m, 2n)$.
 P is $(6t, 3t^{2})$.
Hence, $m = 6t$, $2n = 3t^{2}$ $n = \frac{3}{2}t^{2}$

(b)
$$t = 1, f(x) = k, m = 6, n = \frac{3}{2}$$

 $2[(x - m)^2 + n] = k$
 $2[(x - 6)^2 + \frac{3}{2}] = k$
 $2(x^2 - 12x + 36 + \frac{3}{2}] = k$
 $2x^2 - 24x + 75 - k = 0$
If $f(x) = k$ has real roots
 $b^2 - 4ac \ge 0$
 $(-24)^2 - 4(2)(75 - k) \ge 0$
 $576 - 600 + 8k \ge 0$
 $8k \ge 24$
 $k \ge 3$

7. Find the range of values of x if (a) $2(3x^2 - x) \le 1 - x$, (b) 4y - 1 = 5x and 2y > 3 + x.

(a)
$$2(3x^2 - x) \le 1 - x$$

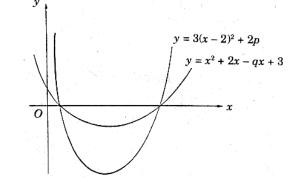
 $6x^2 - 2x + x - 1 \le 0$
 $6x^2 - x - 1 \le 0$
 $(3x + 1)(2x - 1) \le 0$
hence $-\frac{1}{3} \le x \le \frac{1}{2}$
(b) $2y > 3 + x$
 $2(\frac{1 + 5x}{4}) > 3 + x$
 $1 + 5x > 6 + 2x$
 $3x > 5$
 $x > \frac{5}{3}$

- 8. Given $y = x^2 + 2kx + 3k$ has a minimum value of 5.
 - (a) Without using the differentiation method, find the two possible values of *k*.
 - (b) With the values of *k*, sketch on the same axes, the two graphs for $y = x^2 + 2kx + 3k$.

(c) State the coordinates of the minimum points of the graph $y = x^2 + 2kx + 6k$.

(a)
$$y = x^{2} + 2kx + 3k$$

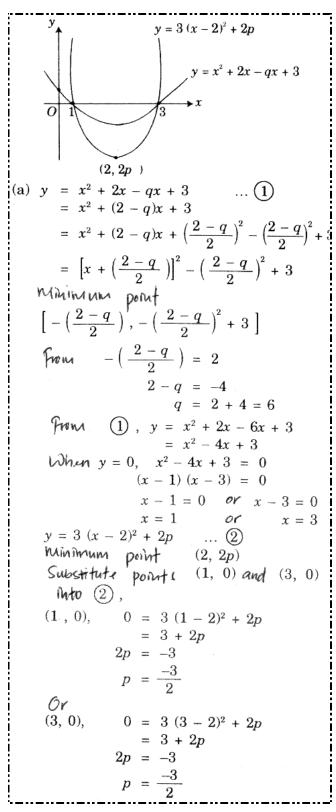
 $= x^{2} + 2kx + k^{2} - k^{2} + 3k$
 $= (x + k)^{2} - k^{2} + 3k$
 $Ninimum value $y = -k^{2} + 3k$
 $\therefore -k^{2} + 3k - 2 = 0$
 $k^{2} - 3k + 2 = 0$
 $(k - 2)(k - 1) = 0$
 $k = 2$ or $k = 1$
(b) $If k = 1, y = (x + 1)^{2} + 2$
 $If k = 2, y = (x + 2)^{2} + 2$
 $y = (x + 2)^{2} + 2$
(c) Minimum point $= (-k, -k^{2} + 3k)$
 $= (-k, 2)$
9.$



The diagram above shows the graph of a curve $y = x^2 + 2x - qx + 3$ and

 $y = 3(x-2)^2 + 2p$ which intersect at two points on the x-axis. Find

- (a) the values of p and q,
- (b) the minimum values of the two curves.

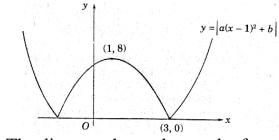


(b) Substitute $p = \frac{-3}{2}$ and $q = 6$ into the
minimum points for both the curve
$(2, 2p) = \left[2, 2\left(\frac{-3}{2}\right)\right]$
= (2, -3)
$\left[-\left(\frac{2-q}{2}\right), -\left(\frac{2-q}{2}\right)^2 + 3\right] = \left[-\left(\frac{2-6}{2}\right), -\left(\frac{2-6}{2}\right)^2 + 3\right]$
= (2, -1)
So, the minimum value for both the curve is -3 and -1.
10 (a) Given $f(r) = 4r^2$ 1 Find the range of

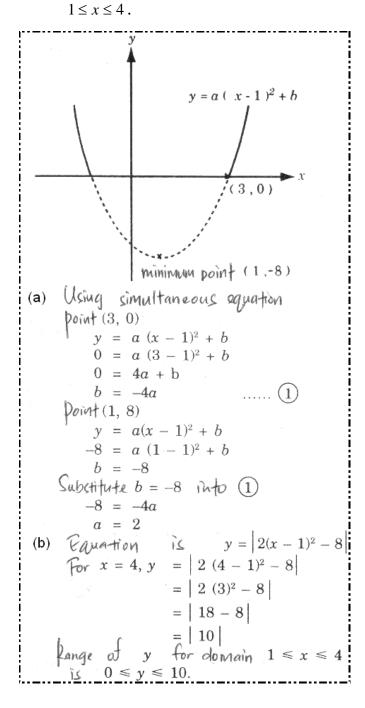
- 10.(a) Given $f(x) = 4x^2 1$. Find the range of values of x so that f(x) is always positive.
 - (b) Find the range of values of x which satisfies the inequality $(x-2)^2 < (x-2)$.

F	
(a) Given	$f(x) = 4x^2 - 1$ and $f(x)$ is always positive
Š0	$4x^2 - 1 > 0$
	(2x-1)(2x+1) > 0
1	2x - 1 > 0 or $2x + 1 > 0$
	$x > \frac{1}{2}$ or $x < -\frac{1}{2}$
(b) Cliven	$(x-2)^2 < (x-2)$
Mance	$x^2 - 4x + 4 < x - 2$
	$x^2 - 4x + 4 - x + 2 < 0$
	$x^2 - 5x + 6 < 0$
i .	(x-2)(x-3) < 0
į	2 < x < 3
	у,
	Î
-	2 $3 \times x$
1	

11.



The diagram shows the graph of a curve $y = |a(x-1)^2 + b|$. The point (1, 8) is the maximum point of the curve. Find (a) the values of *a* and *b*,



(b) the range of values of y in the domain

1999

- 12.(a) Find the range of values of x so that 9+2x > 3 and 19 > 3x+4.
 - (b) Given 2x + 3y = 6, find the range of the values of x when y < 4.

(a)
$$9 + 2x > 3$$

 $x > -3$
 $3x + 4 < 19$
 $x < 5$
 $\therefore -3 < x < 5$
(b) $3y = 6 - 2x$
 $y = \frac{(6 - 2x)}{3}$
 $y < 5$
 $\frac{(6 - 2x)}{3} < 5$
 $6 - 2x < 15$
 $x > -\frac{9}{2}$

13. Find the range of *x* if given (x-2)(2x+3) > (x-2)(x+2).

$\frac{(x-2)(2x+3)}{2x^2-x-6}$	> $(x - 2)(x + 2)$ > $x^2 - 4$
$x^2 - x - 2$	> 0
(x + 1)(x - 2)	> 0
x < -1, x > 2	

2000

14. Without using the differentiation method or drawing a graph, find the maximum or minimum value of the function $y = 1 + 2x - 3x^2$. Hence, find the symmetrical axis of the graph of the function.

$$y = 1 + 2x - 3x^{2}$$

$$= -3x^{2} + 2x + 1$$

$$= -3(x^{2} - \frac{2}{3}x) + 1$$

$$= -3[x^{2} - \frac{2}{3}x + (-\frac{1}{3})^{2} - (-\frac{1}{3})^{2}] + 1$$

$$= -3[x - \frac{1}{3})^{2} - \frac{1}{9}] + 1$$

$$= -3(x - \frac{1}{3})^{2} + 1\frac{1}{3}$$

Maximum value for $y = 1\frac{1}{3}$
The axis of symmetry is $x = \frac{1}{3}$

- 15. Find the range of the values of *k* so that the straight line y = 2x + k does not intersect the curve $x^2 + y^2 - 6 = 0$. (1)y = 2x + k..... $x^2 + y^2 - 6 = 0$ (2)..... Substitute (1) into (2), $x^{2} + (2x + k)^{2} - 6 = 0$ $x^2 + 4x^2 + 4xk + k^2 - 6 = 0$ $5x^2 + 4kx + k^2 - 6 = 0$ Roots of two equation that does not intersect $b^2 - 4ac < 0$ $16k^2 - 4(5)(k^2 - 6) < 0$ $16k^2 - 20k^2 + 120 < 0$ $-4k^2 < -120$ $k^2 > 30$ k < -5.477 or k > 5.477
- 16.(a) Sketch the graph of $y = x^2 + 2$ for $-6 \le x \le 4$. Hence, state the range of values of *y*.
 - (b) Show that the function $3x-2-2x^2$ is always negative for all real values of x.



